

 [image: https://badge.fury.io/py/pastream.svg]
 [https://badge.fury.io/py/pastream][image: https://travis-ci.org/tgarc/pastream.svg?branch=master]
 [https://travis-ci.org/tgarc/pastream][image: https://ci.appveyor.com/api/projects/status/wk52r5jy9ri7dsi9/branch/master?svg=true]
 [https://ci.appveyor.com/project/tgarc/pastream/branch/master]
GIL-less Portaudio Streams for Python

pastream builds on top of portaudio [http://www.portaudio.com/] and the
excellent sounddevice [http://github.com/spatialaudio/python-sounddevice]
python bindings to provide some more advanced functionality right out of the
box. Note that in addition to the pastream library, pastream includes a
command line application for playing
and recording audio files.

	Documentation:

	http://pastream.readthedocs.io/

	Source code repository and issue tracker:

	http://github.com/tgarc/pastream/

Features

	GIL-less Audio Callbacks

	Having the portaudio callback implemented in C means audio interrupts can
be serviced quickly and reliably without ever needing to acquire the Python
Global Interpreter Lock (GIL). This is crucial when working with libraries
like Pillow [https://python-pillow.org/] which may greedily grab and
hold the GIL subsequently causing audio overruns/underruns.

	Input Stream iterators

	Efficiently retrieve live audio capture data through an iterable. As simple as:

import pastream as ps
for chunk in ps.chunks():
 process(chunk)

See pastream.chunks and pastream.InputStream.chunks method.

	Built-in support for working with SoundFiles and numpy ndarrays

	Seamless support for playback/recording of numpy ndarrays, generic buffer
types, and SoundFiles.

	Reader/Writer Threads

	pastream simplifies the process of implementing stream reader and writer
threads to manipulate and/or generate data in the background while leaving
the main thread free for higher level management tasks.

External Dependencies

There are a few compiled libraries pastream requires which may need to be
installed separately depending on your operating system. Windows users are
luckiest, they can skip this section entirely.

	libffi [https://sourceware.org/libffi/] (Linux/Unix/MacOSX):

	Under Linux/Unix/MacOSX platforms you’ll need to install the ffi
library. (For Windows users, ffi is already included with the python cffi
package.) libffi is available through most package managers:

$ yum install libffi-devel # Red-hat/CentOS Linux
$ apt-get install libffi-dev # Ubuntu/debian derivatives
$ brew install libffi # Homebrew on OSX

More information on installing libffi is available in the cffi
documentation here [https://cffi.readthedocs.io/en/latest/installation.html#platform-specific-instructions].

	PortAudio [http://www.portaudio.com] and libsndfile [http://www.mega-nerd.com/libsndfile/] (Linux/Unix):

	Linux and Unix users will also need to install a recent version of the
PortAudio and libsndfile libraries. (For Windows and OSX, the
sounddevice and soundfile python packages include prebuilt versions for
you.) You can either install the latest available from your package manager
(e.g. apt-get install libportaudio2 libsndfile for debian/raspbian) or
install the latest stable build from the package website (Recommended).

Installation

Once the above dependencies have been resolved, you can install pastream using
pip:

$ pip install pastream

Building From Source

Clone pastream with the --recursive flag:

$ git clone --recursive http://github.com/tgarc/pastream

Or, if you already have a checkout:

$ cd <path/to/checkout>
$ git submodule update --init

Finally, do a pip install from your local working copy:

$ pip install <path/to/checkout>

Building Documentation

Documentation for pastream can be easily generated in a wide variety of formats
using Sphinx. Just follow the steps below.

Checkout the repository and cd into it:

$ git clone http://github.com/tgarc/pastream
$ cd pastream

Install documentation dependencies using requirements file:

$ pip install -r docs/requirements.txt

Then use the included Makefile/make.bat to generate documentation. (Here we
output to the html format):

$ cd docs
$ make html

Examples

Record one second of audio to memory, then play it back:

import pastream as ps

Use *with* statements to auto-close the stream
with ps.DuplexStream() as stream:
 out = stream.record(int(stream.samplerate), blocking=True)
 stream.play(out, blocking=True)

Playback 10 seconds of a file, adding zero padding if the file is shorter, and
record the result to memory:

import pastream as ps, soundfile as sf

with sf.SoundFile('my-file.wav') as infile, ps.DuplexStream.from_file(infile) as stream:
 out = stream.playrec(infile, frames=10 * int(stream.samplerate), pad=-1, blocking=True)

Grab (real) frequency transformed live audio stream with 50% overlap:

import pastream as ps, numpy as np

chunksize = 1024
window = np.hanning(chunksize)
for x_l in ps.chunks(chunksize, overlap=chunksize//2, channels=1):
 X_l = np.fft.rfft(x_l * window)

Generate a pure tone on-the-fly

import time
import pastream as ps
import numpy as np

A simple tone generator
def tone_generator(stream, buffer, f, loop=False):
 fs = stream.samplerate

 # Create a time index
 t = 2*np.pi*f*np.arange(len(buffer), dtype=stream.dtype) / fs

 # Loop until the stream stops
 while not stream.finished:
 frames = buffer.write_available
 if not frames:
 time.sleep(0.010)
 continue

 # Get the write buffers directly to avoid making any extra copies
 frames, part1, part2 = buffer.get_write_buffers(frames)

 out = np.frombuffer(part1, dtype=stream.dtype)
 np.sin(t[:len(out)], out=out)

 if len(part2):
 # part2 will be nonempty whenever we wrap around the end of the ring buffer
 out = np.frombuffer(part2, dtype=stream.dtype)
 np.sin(t[:len(out)], out=out)

 # flag that we've added data to the buffer
 buffer.advance_write_index(frames)

 # advance the time index
 t += 2*np.pi*f*frames / fs

with ps.OutputStream(channels=1) as stream:
 # Set our tone generator as the source and pass along the frequency
 freq = 1000
 stream.set_source(tone_generator, args=(freq,))

 # Busy-wait to allow for keyboard interrupt
 stream.start()
 while stream.active:
 time.sleep(0.1)

See also the included examples under /examples.

Command Line Application

Once installed, the pastream application should be callable from your command
line. If you’re familiar with SoX [http://sox.sourceforge.net/] you’ll
notice that some of the command line syntax is quite similar. Here are a few
examples to help get you started.

Display the help file:

$ pastream -h

List available audio devices:

$ pastream -l

Simultaneous play and record from the default audio device:

$ pastream input.wav output.wav

Pipe input from sox using the AU format and record the playback:

$ sox -n -t au - synth sine 440 | pastream - output.wav

Play a RAW file:

$ pastream -c1 -r48k -e=pcm_16 output.raw

Record 10 minutes of audio at 48kHz:

$ pastream null output.wav -r48k -d10:00

Release Notes

0.1.2:

	(ba45a) improve file read/write efficiency

	(b7b7d) added –fatal-xruns option to automatically abort on detected xruns

	(5d7dc) fixed encoding errors with non-ascii device names

0.1.1:

	minor fixes to docs and cli

	(c533a) add ‘mode’ argument to to_file

	(c533a) defer numpy import to improve total import time (as well
as the launch time of the pastream cli app)

	(df4bc3) add tone generator example to README

	(df4bc3) bump sounddevice req up to 0.3.9 to get improved import times

	0.1.0:

	
	(c70bda) Dropped SoundFileStream classes. This functionality is now
integrated into the regular stream classes.

	(c70bda) Added play/record/playrec methods

	(dbe076) Added seamless support for SoundFiles

	(dbe076) Added built-in support for looping both files and buffers

	(a65cc5) Added set_source/set_sink methods as alternatives to play/record
and as a mechanism to set reader/writer threads.

	(a65cc5) Added to_file/from_file convenience methods

	(7676eb+58472e) offset/pad/duration are all now specified in
hours:minutes:seconds by default. samples can still be specified by
appending an ‘s’ suffix (just like with SoX).

	0.0.8:

	
	BUG: fixed possible bad behavior when pad >= 0 frames < 0 (06881)

	BUG: pad > 0 can cause too many frame reads (fixed in e917e)

	Receive buffer is no longer automatically flushed when calling start()
(cd65b)

	BUG: AttributeError was not correctly being caught and reraised in stream
threads (3bc5e)

	Added sphinx documentation (11c13)

	frames attribute changed from long to long long (ee4ebb)

	chunks: eliminated an unnecessary copy when using overlap (b0304)

	0.0.7:

	
	add –loop option to the CLI to allow looping playback.

	allow empty string as an alternative to null

	Raise exception when attempting to open stream with RAW playback file if
any of samplerate/channels/subtype are not specified.

	change prebuffering behavior slightly: only wait until the first write, not
until the buffer fills up. This should avoid potential long pre-buffer
times

	fix formatting errors in __repr__ when using multiple dtypes and/or devices

	no need to vendor pa_ringbuffer anymore, it’s available on pip! (Thanks
@mgeier !)

	if a SoundFile inpf is passed to a SoundFileInputStream class, it will be
used to set the stream samplerate/channels.

	addresses a bug when BUFFERSIZE < 8192

	Stream and SoundFileStream classes renamed to *DuplexStream

	Swapped assignments of input/output in SoundFileStreams to make it align
with the usage in the rest of the library. The order of input/output
arguments from the CLI still stays the same though.

	remove allow_drops parameters. It can be added back at a later point if
it proves to be a more useful feature

	0.0.6:

	
	fix ‘null’ not properly matching on cmdline

	chunks: check that portaudio has not been terminated before trying to
close/stop a stream

	drop allow_xruns/XRunError

	Buffered*Stream -> *Stream

	*Buffer{Empty,Full} -> Buffer{Empty,Full}

	fix remaining issues with wheel building

	Dropped unused exception classes (PaStreamError, AudioBufferError)

	Added prebuffer argument to start() to bypass filling output buffer before
stream starts

	0.0.5:

	
	Redirect sys.stdout to devnull when ‘-‘ is used as the output file stream

	Specifying multiple --file-type s at command line fixed

	--format now only accepts a single argument

	ringbuffersize_t is of a different type for mac platforms; fixed

	ps.chunks() README example fixed

	
	frames is now a signed value. The behavior previously reserved for

	frames == 0 now is active whenever frames < 0
	Comma separated arguments are no longer allowed; multiple argument
options can only be specified by passing them multiple times

	dropped support for passing a bool for pad parameter

	-q flag for specifying buffersize has been dropped. This is now
reserved for the new --quiet option.

	add a loopback test for the pastream app using stdin > stdout

	improvement: chunks function: make sure that stream is closed properly
without the performance hit of having an extra yield

	new feature: If both padding and frames are < 0, padding will be
added indefinitely

	new feature: -q/--quiet option; this drops the deprecated -q option for
specifying buffersize

	0.0.4:

	
	bugfix: chunks: overlap was (accidentally) not allowed if chunksize was not
non-zero. This should be allowed as long as stream.blocksize > 0.

	chunks now supports passing a generic ndarray to out parameter (without
having to cast it to a bytes object)

	nframes renamed to frames

	padding renamed to pad

	added allow_drops option to give user the option to ignore
ReceiveBufferEmpty error in more atypical use cases

	raise_on_xruns changed to allow_xruns; inverted behavior

	got rid of undocumented keep_alive option; the combination of
allow_drops and pad can give the same functionality

	--pad now can be specified without an argument which just sets pad to
True

	added autopadding feature: Now if frames > 0 and pad == True or pad
< 0, playback will be zero padded out to frames. This is a nice feature
for the pastream application and SoundFileStream since sometimes you want
to add extra padding after the file playback.

	0.0.3:

	
	command line options for size parameters now accept k/K/m/M suffix

	Backwards compatibility break: multiple argument command line options now
accept a comma delimited list

	improved SoundFileStream reader writers; nearly zero read/write misses

	bugfix: __repr__ had a bug for certain cases

	0.0.2:

	
	Improved SoundFileStream interface: remove sfkwargs; instead format,
endian, and subtype can be passed directly since they don’t collide with
any of the sounddevice parameters

	Updated examples to allow half or full duplex operation. Also accepts
subtype for RAW files

	chunks() updates
* better polling behavior greatly decreases read misses
* now supports generic buffers so numpy is not required
* added out option to allow user to pass a preallocated buffer
* bugfix: overlap was not overlapping correctly

	MAJOR bugfix: samplerate was not being properly passed up the class chain

	MAJOR bugfix: lastTime was not being properly copied in py_pastream.c so
the value returned was garbage

	bugfix: assert_chunks_equal: the ‘inframes’ buffer was not being allocated
enough space for when chunksize > blocksize which was causing mismatch
hysteria

	0.0.1:

	
	First tenable release

API Reference

pastream: GIL-less Portaudio Streams for Python

	
pastream.chunks(chunksize=None, overlap=0, frames=-1, pad=0, offset=0, atleast_2d=False, playback=None, loop=False, buffersize=None, out=None, **kwargs)

	Read audio data in iterable chunks from a Portaudio stream.

	Parameters:	
	overlap, frames, pad, offset, atleast_2d, playback, loop, (chunksize,) –

	out (buffersize,) – See InputStream.chunks() for description.

	Other Parameters:

	 	**kwargs – Additional arguments to pass to Stream constructor.

	Yields:	ndarray or bytearray or type(out) – buffer object with chunksize elements.

See also

InputStream.chunks()

	
class pastream.RingBuffer(elementsize, size=None, buffer=None)

	PortAudio’s single-reader single-writer lock-free ring buffer.

	C API documentation:

	http://portaudio.com/docs/v19-doxydocs-dev/pa__ringbuffer_8h.html

	Python wrapper:

	https://github.com/spatialaudio/python-pa-ringbuffer

Instances of this class can be used to transport data between Python
code and some compiled code running on a different thread.

This only works when there is a single reader and a single writer
(i.e. one thread or callback writes to the ring buffer, another
thread or callback reads from it).

This ring buffer is not appropriate for passing data from one
Python thread to another Python thread. For this, the queue.Queue
class from the standard library can be used.

	Parameters:	
	elementsize (int) – The size of a single data element in bytes.

	size (int) – The number of elements in the buffer (must be a power
of 2). Can be omitted if a pre-allocated buffer is passed.

	buffer (buffer) – optional pre-allocated buffer to use with RingBuffer.
Note that if you pass a read-only buffer object, you still get a
writable RingBuffer; it is your responsibility not to write
there if the original buffer doesn’t expect you to.

	
advance_read_index(size)

	Advance the read index to the next location to be read.

	Parameters:	size (int) – The number of elements to advance.

	Returns:	The new position.

	Return type:	int

Note

This is only needed when using
get_read_buffers(), the methods read() and
readinto() take care of this by themselves!

	
advance_write_index(size)

	Advance the write index to the next location to be written.

	Parameters:	size (int) – The number of elements to advance.

	Returns:	The new position.

	Return type:	int

Note

This is only needed when using
get_write_buffers(), the method write() takes
care of this by itself!

	
elementsize

	Element size in bytes.

	
flush()

	Reset buffer to empty.

Should only be called when buffer is not being read or
written.

	
get_read_buffers(size)

	Get buffer(s) from which we can read data.

When done reading, use advance_read_index() to make the
memory available for writing again.

	Parameters:	size (int) – The number of elements desired.

	Returns:	
	The number of elements available for reading (which might
be less than the requested size).

	The first buffer.

	The second buffer.

	Return type:	(int, buffer, buffer)

	
get_write_buffers(size)

	Get buffer(s) to which we can write data.

When done writing, use advance_write_index() to make the
written data available for reading.

	Parameters:	size (int) – The number of elements desired.

	Returns:	
	The room available to be written or the given size,
whichever is smaller.

	The first buffer.

	The second buffer.

	Return type:	(int, buffer, buffer)

	
read(size=-1)

	Read data from the ring buffer into a new buffer.

	Parameters:	size (int, optional) – The number of elements to be read.
If not specified, all available elements are read.

	Returns:	A new buffer containing the read data.
Its size may be less than the requested size.

	Return type:	buffer

	
read_available

	Number of elements available in the ring buffer for reading.

	
readinto(data)

	Read data from the ring buffer into a user-provided buffer.

	Parameters:	data (CData pointer or buffer) – The memory where the data should be stored.

	Returns:	The number of elements read, which may be less than
the size of data.

	Return type:	int

	
write(data, size=-1)

	Write data to the ring buffer.

	Parameters:	
	data (CData pointer or buffer or bytes) – Data to write to the buffer.

	size (int, optional) – The number of elements to be written.

	Returns:	The number of elements written.

	Return type:	int

	
write_available

	Number of elements available in the ring buffer for writing.

	
class pastream.Stream(kind, device=None, samplerate=None, channels=None, dtype=None, blocksize=None, **kwargs)

	Base stream class from which all other stream classes derive.

Note that this class inherits from sounddevice [http://python-sounddevice.readthedocs.io/en/latest/index.html#module-sounddevice]‘s _StreamBase
class.

	
abort()

	

	
aborted

	Check whether stream has been aborted.

If True, it is guaranteed that the stream is in a finished state.

	
close()

	

	
finished

	Check whether the stream is in a finished state.

Will only be True if start() has been called and the stream
either completed sucessfully or was stopped/aborted.

	
frame_count

	Running total of frames that have been processed.

Each new starting of the stream resets this number to zero.

	
classmethod from_file(file, *args, **kwargs)

	Create a stream using the charecteristics of a soundfile

	Parameters:	file (SoundFile or str or int or file-like object) –

	Other Parameters:

	 	*args, **kwargs – Arguments to pass to Stream constructor

	Returns:	Open stream

	Return type:	Stream or Stream subclass instance

See also

InputStream.to_file()

	
isduplex

	Return whether this is a full duplex stream or not

	
start(prebuffer=True)

	Start the audio stream

	Parameters:	prebuffer (bool or int, optional) – Wait for a number of frames to be written to the output
buffer before starting the audio stream. If True is given
just wait for the first write. If not using threads or the
stream is not an output stream this has no effect.

	
status

	The current PaStreamCallbackFlags status of the portaudio
stream.

	
stop()

	

	
wait(timeout=None)

	Block until stream state changes to finished/aborted/stopped or until the
optional timeout occurs.

	Parameters:	time (float, optional) – Optional timeout in seconds.

	Returns:	True unless the timeout occurs.

	Return type:	bool

	
xruns

	

	
class pastream.InputStream(*args, **kwargs)

	Record only stream.

	Other Parameters:

	 	*args, **kwargs – Arguments to pass to Stream.

	
chunks(chunksize=None, overlap=0, frames=-1, pad=-1, offset=0, atleast_2d=False, playback=None, loop=False, buffersize=None, out=None)

	Read audio data in iterable chunks from a Portaudio stream.

Similar in concept to PySoundFile library’s
blocks() [http://pysoundfile.readthedocs.io/en/latest/index.html#soundfile.SoundFile.blocks] method. Returns an iterator over
buffered audio chunks read from a Portaudio stream. By default a
direct view into the stream’s ringbuffer is returned whenever
possible. Setting an out buffer will of course incur an extra copy.

	Parameters:	
	chunksize (int, optional) – Size of iterator chunks. If not specified the stream blocksize will
be used. Note that if the blocksize is zero the yielded audio
chunks may be of variable length depending on the audio backend.

	overlap (int, optional) – Number of frames to overlap across blocks.

	frames (int, optional) – Number of frames to play/record.

	pad (int, optional) – Playback padding. See OutputStream.play(). Only applicable
when playback is given.

	offset (int, optional) – Recording offset. See InputStream.record().

	atleast_2d (bool, optional) – Always return chunks as 2 dimensional arrays. Only valid when numpy
is used.

	playback (buffer or SoundFile, optional) – Set playback audio. Only works for full duplex streams.

	loop (bool, optional) – Loop the playback audio.

	out (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or buffer object, optional) – Alternative output buffer in which to store the result. Note that
any buffer object - with the exception of ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] -
is expected to have single-byte elements as would be provided by
e.g., bytearray.

	Yields:	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or memoryview or cffi.buffer – Buffer object with chunksize frames. If numpy is available
defaults to ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] otherwise a buffer of bytes is
yielded (which is either a cffi.buffer object or a
memoryview).

See also

chunks()

	
record(frames=None, offset=0, atleast_2d=False, buffersize=None, blocking=False, out=None)

	Record audio data to a buffer or file

	Parameters:	
	frames (int, sometimes optional) – Number of frames to record. Can be omitted if out is specified.

	offset (int, optional) – Number of frames to discard from beginning of recording.

	buffersize (int, optional) – Buffer size to use for (double) buffering audio data to file. Only
applicable when out is a file. Must be a power of 2.

	out (buffer or SoundFile, optional) – Output sink.

	Returns:	Recording destination.

	Return type:	ndarray or bytearray or type(out)

See also

OutputStream.play(), DuplexStream.playrec()

	
set_sink(sink, buffersize=None, args=(), kwargs={})

	Set the recording sink for the audio stream

	Parameters:	
	sink (function or RingBuffer or SoundFile or buffer type) – Recording sink. If sink is a function it must be of the form:
function(stream, ringbuffer, *args, **kwargs). Funcion sources
are useful if you want to handle capturing of audio data in some
custom way. For example, sink could be a function that writes
audio data directly to a socket. This function will be called from
a separate thread whenever the stream is started and is expected to
close itself whenever the stream becomes inactive. For an example
see the _soundfilerecorder function in the source code for this
module.

	buffersize (int, optional) – RingBuffer size to use for (double) buffering audio data. Only
applicable when sink is either a file or function. Must be a
power of 2.

	kwargs (args,) – Additional arguments to pass if sink is a function.

	Returns:	RingBuffer wrapper interface to which audio device will write audio data.

	Return type:	RingBuffer instance

See also

OutputStream.set_source()

	
class pastream.OutputStream(*args, **kwargs)

	Playback only stream.

	Other Parameters:

	 	*args, **kwargs – Arguments to pass to Stream.

	
play(playback, frames=-1, pad=0, loop=False, buffersize=None, blocking=False)

	Play back audio data from a buffer or file

	Parameters:	
	playback (buffer or SoundFile) – Playback source.

	frames (int, optional) – Number of frames to play. (Note: This does not include the length of
any additional padding). A negative value (the default) will cause the
stream to continue until the send buffer is empty.

	pad (int, optional) – Number of zero frames to pad the playback with. A negative value causes
padding to be automatically chosen so that the total playback length
matches frames (or, if frames is negative, zero padding will be added
indefinitely).

	buffersize (int) – Buffer size to use for (double) buffering audio data from
file. Only applicable when playback is a file. Must be a power of
2.

	
set_source(source, buffersize=None, loop=False, args=(), kwargs={})

	Set the playback source for the audio stream

	Parameters:	
	source (function or RingBuffer or SoundFile or buffer type) – Playback source. If source is a function it must be of the form:
function(stream, ringbuffer, *args, loop=<bool>,**kwargs).
Funcion sources are useful if you want to handle generating
playback in some custom way. For example, source could be a
function that reads audio data from a socket. This function will be
called from a separate thread whenever the stream is started and is
expected to close itself whenever the stream becomes inactive. For
an example see the _soundfileplayer function in the source code
for this module.

	loop (bool, optional) – Whether to enable playback looping.

	buffersize (int, optional) – RingBuffer size to use for double buffering audio data. Only
applicable if source is a function or SoundFile. Must be a power
of 2.

	Other Parameters:

	 	args, kwargs – Additional arguments to pass if source is a function.

	Returns:	RingBuffer wrapper interface from which audio device will read audio data.

	Return type:	RingBuffer instance

See also

InputStream.set_sink()

	
class pastream.DuplexStream(*args, **kwargs)

	Full duplex audio streamer.

	Other Parameters:

	 	*args, **kwargs – Arguments to pass to Stream.

See also

OutputStream, InputStream

	
playrec(playback, frames=None, pad=0, offset=0, atleast_2d=False, loop=False, buffersize=None, blocking=False, out=None)

	Simultaneously record and play audio data

	Parameters:	
	frames (int, sometimes optional) – Number of frames to play/record. This is required whenever
playback is a file and out is not given.

	buffersize (int) – Buffer size to use for (double) buffering audio data to/from
file. Only applicable when one or both of {playback, out} is a
file. Must be a power of 2.

	offset, atleast_2d, loop, blocking, out (pad,) – See description of InputStream.record() and
OutputStream.play().

	Returns:	Recording destination.

	Return type:	ndarray or bytearray or type(out)

See also

OutputStream.play(), InputStream.record()

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pastream	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | O
 | P
 | R
 | S
 | W
 | X

A

 	
 	abort() (pastream.Stream method)

 	aborted (pastream.Stream attribute)

 	
 	advance_read_index() (pastream.RingBuffer method)

 	advance_write_index() (pastream.RingBuffer method)

C

 	
 	chunks() (in module pastream)

 	(pastream.InputStream method)

 	
 	close() (pastream.Stream method)

D

 	
 	DuplexStream (class in pastream)

E

 	
 	elementsize (pastream.RingBuffer attribute)

F

 	
 	finished (pastream.Stream attribute)

 	flush() (pastream.RingBuffer method)

 	
 	frame_count (pastream.Stream attribute)

 	from_file() (pastream.Stream class method)

G

 	
 	get_read_buffers() (pastream.RingBuffer method)

 	
 	get_write_buffers() (pastream.RingBuffer method)

I

 	
 	InputStream (class in pastream)

 	
 	isduplex (pastream.Stream attribute)

O

 	
 	OutputStream (class in pastream)

P

 	
 	pastream (module)

 	
 	play() (pastream.OutputStream method)

 	playrec() (pastream.DuplexStream method)

R

 	
 	read() (pastream.RingBuffer method)

 	read_available (pastream.RingBuffer attribute)

 	
 	readinto() (pastream.RingBuffer method)

 	record() (pastream.InputStream method)

 	RingBuffer (class in pastream)

S

 	
 	set_sink() (pastream.InputStream method)

 	set_source() (pastream.OutputStream method)

 	start() (pastream.Stream method)

 	
 	status (pastream.Stream attribute)

 	stop() (pastream.Stream method)

 	Stream (class in pastream)

W

 	
 	wait() (pastream.Stream method)

 	
 	write() (pastream.RingBuffer method)

 	write_available (pastream.RingBuffer attribute)

X

 	
 	xruns (pastream.Stream attribute)

 nav.xhtml

 Table of Contents

 		GIL-less Portaudio Streams for Python

_static/ajax-loader.gif

_static/comment-close.png

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

